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A two-dimensional relativistic Vlasov model for a multi-computer environment
was developed to address the particle acceleration process in phase space, including
situations relevant to forward Raman scattering (FRS) and plasma beatwave acceler-
ation (PBWA). Attention was focused on its accuracy, stability, efficiency properties,
and implementation facilities on massively parallel computers. The two-dimensional
Vlasov code has been adapted to optimally use the particular parallel architecture of
the T3D or T3E computer (both processor’s specifications and node-to-node com-
munications). Results obtained on a 64-node Cray T3D clearly show the details
of particle acceleration in phase space, including very low density regions where
particles-in-cell (PIC) codes simply run out of calculation particles. On the other
hand optimization obtained on the T3D architecture leads to a CPU time ¢fs9.5
per time step, per particle, per processor indicating that one processor on the Cray
C94 computer is equivalent to 20 processors on the T3D computer. Finally, we note
that the Vlasov code is able to achieve high parallel efficiency with scalability of
order 2. (© 1999 Academic Press

Key Wordslaser-plasma interaction; parallelism on T3E; semi-Lagrangian Vlasov
codes.

1. INTRODUCTION

Since the suggestion by Tajima and Dawson [1] of particle acceleration by means
plasma waves in 1979, various schemes have been proposed to excite large ampl
electron plasma waves (EPW) (theoretically capable of reaching an electric field of the ol
of GV/m). Such a wave is of interest as a particle accelerator concept since electron pla
wave amplitude can largely exceed the breaking limit of the standard metallic cavity ba
accelerator, which is of the order of 30 MV/m. One of the promising schemes for exciti
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strong plasma waves remains the plasma beatwave accelerator (PBWA), which is bas
the injection of two electromagnetic waves in a plasma of low density. The difference
frequencies of the two electromagnetic waves is chosen to be equal to the plasma frequ
In these conditions, the beat of theses two waves resonantly induces a high-phase vel
longitudinal plasma wave which traps and accelerates electrons to ultra relativistic enert
Because the excitation of the plasma wave relies on the resonant temporel beating of I
the pulse durations have to be much greater than the plasma pgréodl precise matching
is crucial. A very similar mechanism is involved in the forward Raman scattering (FR
process, in which an incident electromagnetic wave decays into an electron plasma v
and a scattered electromagnetic wave.

In previous papers, examples of PBWA and FRS simulations using one-dimensic
Vlasov simulations with periodic or open-system boundary conditions have been car
out (see [2—4]). Such codes render possible a detailed examination of the low density
gions of the phase space especially the description of the tail phenomena, where ol
small number of electrons is involved. In this type of problem, “particles-in-cell” (PIC
codes suffer from poor statistics. This is because the PIC codes lack enough simule
particles to display the detailed phase space structures of the distribution function wt
is often obtained in those regions of phase space where particle and phase velocitie
comparable and where trapping or plasma wavebreaking occurs. A second advanta
the noiseless character of the Vlasov code. Thus during the simulation, we can analyz:
microscopic wave-particle dynamics, the tail formation, and the energy transfer from
pump and idler waves to electrons.

A primary motivation for the present work is to take into account two-dimensional sp
tial effects in the particle acceleration. The nature of the computational algorithm (w
the eulerian characterization of the distribution function) along with the large memory
guirements of the phase space representation (i.e., with at least four phase space var
to describe the electron distribution function) makes this problem a good candidate
parallel execution. Hence a secondary goal of this work is to address key issues involve
parallelizing a Vlasov code in an electromagnetic relativistic regime.

The paper is organized as follows. In Section 2 the plasma geometry is described ant
governing equations are derived. The numerical algorithm implemented on the parallel C
T3D computer is presented in Section 3, including details on the time splitting scheme u
for integrating the Vlasov equation and the transposition method of distribution functi
used here. Issues related to parallelizing the code are then adressed in this section. Num
results relevant to FRS are then presented in Section 4 and comparisons are made wi
one-dimensional case in order to test the validity of the Vlasov code. This section &
includes a discussion on the Manley—Rowe partition and the influence of the transvi
gaussian pump profile on the particle acceleration mechanism. A more complex situatic
then described in Section 5 relevant to plasma beatwave acceleration including Stokes
anti-Sokes cascades and side-scattering. Concurrent performance of the model is disc
in Section 6. Conclusions and future work are offered in Section 7.

2. THE 2D RELATIVISTIC VLASOV MODEL

In forward Raman scattering (FRS) and plasma beatwave acceleration (PBWA), the
deromotive force drives a large amplitude plasma wave along the laser wavevector direc
and produces trapped electrons with very high momenta. To model this, we conside
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infinite homogeneous plasma of densigyn both the x and y direction with a laser wavevec-
tor in the x direction: all field quantities being a function of the space variables x and
Using the Coulomb gaug¥ - A = 0, we restrict the potential vectdx to be in the z
direction only (linear polarization). Recalling that

oA

E=-Vo - — 1
P )

we have in the perpendicular direction z,

A,
= _ 2
= @)
and in the plasma plane,
P ad

Ey = and E,= 3)

_5_

The electron distribution functioR (x, y, p, t) obeys the relativistic Vlasov equation

Cox
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wherer = (x, y, 0) andp = (px, Py, Pz) with the Lorentz factor given by
p2
y = l+(m2c2>. (5)

But huge memory requirements are necessary to handle a full 2D1/2 model, i.e., five pl
space variables, y, px, py, andp; as discussed above. Thus let us consider the followin
class of exact solutions of (4),

F(X, Y. Px, Py, Pz, t) = T(X, Y, Px, Py, 1)8[ Pz — Po(X, y, 1)] (6)

which is relevant to low perpendicular temperature plasma. The reduced 2D distribut
function f (X, y, px, Py, t) describing the particle motion in the, y) plane satisfies the
two-dimensional relativistic Vlasov equation

f of f P,B f P,B,] of
87+&7+&87+eE_ Zyai_FeEy XN =0 @)
at  my adx my ay my | dpx my | dpy

with a Lorentz factor of the form
Pz + pj+ P2,y 1)
‘}/ = \/1 + mzcz . (8)

Assuming the relativistic contribution is due to accelerated particles only along the lon
tudinal direction (i.e., laser propagation direction or x direction), the Lorentz factor can
simplified toy ~ /1 + p2/m?c2. This is valid for moderate intensity with quiver momen-
tum of order 0.1 mc. Furthermore since the relative number of accelerated particles in
x direction remains very small in the beatwave experiment, we can fakeh, in the term
e[Ex — P,By/my]af/apx sincedf/dpx <« no/m3c3, for a small population of accelerated
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particle density, which remains small in comparison with the mean electron dagihe
normalized quantity is thef fA/a P, <« 1 where the dimensionless space and momentul
variables used in simulation have been taken t& bexwp/c and p, = px/mc. The timet
and the distribution functiot are then normalized to the inverse plasmafrequergéyand
to ng/ m?c?; the electron density in then normalizedip Comparison with a full relativistic
Vlasov code does not give a difference for the range of laser intensities considered hel
In this model, the transverse momentum effects in the z direction are described k
cold “fluid” model. The transverse momentum(x, y, t) is simply obtained through the
conservation of the canonical generalized momenum e A, = 0. Deriving with respect
to time and using (2) yield

P,
ot

=eE,. 9)

The plasma self consistent electric field componé&itandEy are given by Egs. (3) while
the potentiakb obeys the Poisson equation

A® === [ne(x, ¥, ) —ndl. (10)

N, is the homogeneous ion density amd= [ f dp, dp,. The electromagnetic field com-
ponents(E,, By, By) obey Maxwell’s equations

0By 9E, 1)
ot ay

3B dE

= (12)
at X

& _ 2(9By _9B) % (13)
ot X ay &o

whereJ; = en.P,/m.

3. THE NUMERICAL PARALLEL ALGORITHM

3.1. Semi-Lagrangian Advection

In an Eulerian advection scheme an observer watches the world evolve around him
fixed geographical point. Such schemes work well on regular cartesian meshes (facilita
vectorisation and parallelization of the resulting code), but often lead to overly restrict
time steps due to considerations of computational stability. In a Lagrangian advect
scheme (as PIC codes) an observer watches now the world evolve around him as he tr
with the fluid particle. Such schemes can often use much larger time steps than Eulerian
but have the disadvantage that an initially regularly spaced set of particles will gener:
evolve to a highly irregularly spaced set at later times. The idea behind semi-Lagranc
advection (see [6]) is to try to get the best of both worlds: the regular resolution of Euler
schemes and the enhanced stability of Lagrangian ones. This is achieved by using a diff
set of particles at each time step, the set of particles being chosen such that they arrive e»
at the points of a regular cartesian mesh at the end of the time step.
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The semi-Lagrangian Vlasov code (see Refs. [2, 3]) has been adapted to optimally
the particular parallel architecture of the Cray T3D and then T3E. For example, in t
case of a one-dimensional electrostatic problem described by a Vlasov equation of 1
% + v% + e—mE % =0, the well-known fractional step or “splitting scheme” (see Refs. [7, 8
for bidimensional models) used to integrate the distribution funcfion v, t) (in which
we shift the distribution function alternatively in tlairection leading to the mathematical
form f*(x, v) = f (X — vAt, v) and then in the direction with the corresponding expres-
sion f**(x, v) = f*(X, v — eEAt/m)) is straightforward to parallelize. Each shift is easily
parallelized by just assigning a fraction of the distribution function to each node (for €
ample, for the shift in thex direction, we break the direction into regions with a region
assigned to a node), and thus each processor handles those grid points in its region. T
transposition of the distribution function is required to perform the parallelized shift in tf

second direction.

3.2. Two-Dimensional Relativistic Vlasov Equation

Let us definef"(X, y, px, py) = f (X, ¥, px, Py, ta=nAt) as the function distributed
among the processors along the x direction &fick, y, p,. py) as the function obtained
by transposition, i.e., with a decomposition domain inphelirection. The Vlasov equation
is then advanced using the time splitting scheme, which involved here four steps:

Step Al. Transpose the function and shift in the x and y direction,

(X, Y, px, py) = (X, Y, By, Py)

. 3 ~ B, At
f (Xv yv va py) - fn(x - m_)/7’ y’ va py) (14)

y N . py At
f2 (Xv yv va py) = f (X’ y_ m_;l/71 px’ py)
and then make the inverse transpositiof;(x, y, py. py) = f2(X, Y, px. Py)-
Step A2. Compute the electromagnetic field and fluid momerRuat timet, 1> and
then shift inp space for a time stept,

. e P,B
3%, y, px, py) = f? (x, Y, Px —e<Ex — fny>At, py>
(15)

~ - P,B
F*&y, px. py) = £ (Xv Y. Px: Py —G(Eﬁ r;yX)At)

Step A3. Betweetly 12 andt, 1, we repeat again Step Al. Cubic spline interpolatior
is then used to obtain the distribution function at the grid point at each integration step.
equation for the perpendicular motion (9) is solved betwgern, andt, 1/, using the time
centered scheme,
n+i n—1 n
P vyt = Pt ey TEAE 1 (16)
Poisson equation (10) is solved at titag; > using a parallel FFTprogram implemented
on the Cray T3E computer.

1 FFT, fastFouriertransform.
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3.3. Maxwell Equations

The Maxwell equations (11), (12), and (13) are solved using a usual leapfrog sche
leading to

BTH»% — Bn*% _ ﬁ n _ En
X i+3.] X i+3.]j Ay zi+3,j+3 zi+i,j-3
17
Bn+% Bn_% At En En ( )
yii+d = Pyijer T Ax( zitdi+s Zi—%~i+%)
o At jn+d czAt( n+d v )
zitzjt+s  zZitpits gy Tzitiits AX \ Yit+Lli+3 yii+3
2
_CAL g g (18)
Ay X i+3,j+1 xi+3,j/)"

Notice that the solution of (18) involves the knowledge of the current dedgity/? at the
middle of the time intervai,; 1> which is approximated by

- e nii . o1
zi+3.j+3 ~ om zit+3.i+3 Me i+3.0+3 +Ne i+1.+3]" (19)

4. FORWARD RAMAN SCATTERING PROBLEM

4.1. Homogeneous Pump Laser Profile

The FRS instability is a parametric instability involving three waves: the incident ele
tromagnetic wave, here referred to as the “pump” wamg ko) which drives two unstable
waves; a scattered electromagnetic wévg ks); and an electron plasma way@e, Ke).
The Raman instability occurs when the usual matching conditions hold:

wo(Ko) + Aw = ws(Ks) 4 we(Ke) and Ko = Ks + k. (20)

We assume perfe&matching (since we have a periodic simulation and mode numbe
match exactly), whilAw contains the mismatch (if any). The matching conditions can b
satisfied only ifie < ngit /4 wherengi; is the critical density above which the electromagnetic
wave will not propagate. (A high amplitude electromagnetic wave can however propac
through an overdense plasma provided that the electron quiver velocity is close to the velc
of light.) In order to compare our simulation with analytical predictions, it is convenier
for such a Raman problem, to introduce the classic three-oscillator model. Defining
complex action amplitude, s (such that the action density is given 8= aa*), the
oscillator model in a lossless medium is given by

a0 0
—_— — = —C
(8'[ +vgoax)ao asde

9 9 .
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Here we have defined = ke/2+/2wowews. The plasma is considered unmagnetized. In th
three-oscillator model with periodic boundary conditions (see Ref. [3]), we can drop t
group-velocity-times spatial gradient terms, and convert to ordinary coupled differen
equations and analyze action density conservation. Equations (21) yield the Manley—-R
partition,

Cs(t) = aoa;,kx:ko,kyzo + asa:,kx:ks,kyzo = CS(O) = const (22)

which means photon conservation and

t
Calt) = 8030+ BBk ko0 = Co0) — 20 [Pt (@3)
0

Iflosses are taken equal to zero, Eq. (23) means that when one pump photon disappear
plasmon is created. Indeed the action Stwngenerally decreases since it involves a plasm
wave which can accelerate and trap particles and thus loses energy and action. Thusthe!
of a periodic simulation (the transverse direction y being homogeneous in both the pla:
system and electromagnetic field spatial structures) is clearly demonstrated since it all
one to use action conservation to separate the effects of three-wave interaction from t
due to nonlinear wave-particle interaction. We have performed numerical simulations us
periodic boundary conditions in both the x and y directions and an initial state consisting «
significant electromagnetic pump propagating in the x positive direction and homogene
in the y direction and a propagating electrostatic plasma wave of modest amplitude, ac
as a perturbation from which FRS can grow, since a Vlasov code is essentially noisel
Since the velocities are normalized to ¢, and frequencieg tthe choice ok, (=2ks or 2ke)
determines the plasma box lendth in terms ofc/wp. The plasma was chosen with two
electron temperature components, the majority (95%) componentwith a 15 keV tempera
in both directionspx and py (high enough for electron Landau damping to subdue th
usually rapidly growing but here unwanted backward stimulated Raman scattering)
a minority (5%) px-component at 100 keV (to enhance wave-particle interaction). Wit
these parameters, a good frequency match was obtained by ch&gsing =2.4, i.e., a
box lengthL x =5.23c/w, (we take in the second directidry, = 20c/wp). The normalized
pump electric field amplitude i8 B,/ mwpc=0.28 which gives a quiver momentum of
Pos/ Mc~~ 0.10 (for a 10.6um — CO; laser, the corresponding intensity is 1.840/cn?).
The density as compared tothe critical density is thgimg; >~ 0.15.

The time behavior of the action densities from the 2D Vlasov simulation are shown
Figs. 1 and 2 together with the relevant action sum. The action is transferred back and f
between the pump and daughter waves in a classic fashion previously metin a 1D Vle
simulation (see Ref. [3]) with an accumulating loss due the plasmawave and the action tr
ferto accelerated particles. As expected from (22) the actior&for the electromagnetic
wave pair is well conserved (to within 2%), while the pump-plus-plasmaGudecreases.
Figure 3 shows thg — p, phase space representatibix, y = Ly/2, px, py = 0) afforded
by the Vlasov code. Here color shading is used to indicate the relative values of normali
phase space density betweermr3@nd 104, Figure 3 is in good agreement with numeri-
cal results obtained directly by a 1D periodic Vlasov code and seems to indicate a cla
acceleration process when the transverse laser profile is chosen to be homogeneous
clearly exhibit the acceleration of positive velocity particles followed by the trapping at
formation of vortices with spiral orbits in the phase space.
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FIG. 1. Time behavior of the electromagnetic action densities obtained from the 2D semi-Lagrangian Vla
code: The pumig, = a,a, the Stokess, = a;a%, and their sunC, =S + S.

0.016

Action

pump action S;

0.008

plasma action S,—.

tmp

FIG. 2. Time behavior of the pump action densiy and the plasma action densify and their action sum
C.= S + S indicating the occurrence of action transfer from the plasma wave to accelerated particles.
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4.2. Gaussian Pump Laser Profile

To further illustrate the influence of transverse effects on the particle acceleration me
anism, a numerical simulation with a pump light with a gaussian amplitude profile is th
investigated. The numerical resolution of Maxwell’s equations (11) to (13) requires in ti
case the knowledge of the initial electromagnetic fild By, and momemtunP, for
a gaussian profile amplitude &, given in the formE,q(y) = Ece#¥~%)*. We choose
eE,/mw,c=0.35. Thus the fields are computed by considering an electromagnetic we
propagation in a homogeneous plasma. Assume an expression of the electric field ir
following form, with ¢ (t) = w(ky)t — koX — kyY,

1 oo ~ i
E.(x,y,t) = E/ dky Eq(ky) expis(t), (24)

where Eo(ky) is the Fourier transform of the amplitude profile. Equations (11), (12), ar
(9) lead to the analytic solutions f@;, By, P, at timetw, = —At/2,

+oo =

Bx(X, Yy, —At/2) = \/_/ (E) expi(—At/2) (25)
y

By(X, Y, —At/2) = N / _k(‘l’( )" expi¢(—At/2) (26)
y
+oo _ E

P,(X,y, —At/2) = «/_/ (ky) expiZ(—At/2), 27)

where the electromagnetic frequency= w (ky) obeys the dispersion relation
w® = o} + Ki&? + Ko = o + ki, (28)

This second numerical simulation is conducted with a maximum quiver velocipysaf
mc~ 0.134 located initially aty = Ly /2. The time step used hereAgw, = 0.05. Using

a phase space grid &f; NyN,, Np, of 64 x 32x 128x 32, i.e., 8,388,608 “particles,” the
CPU time on the Cray-C94 computer is 0 /&8 per time step per grid point, i.e., about 8 h
CPUtime upto 300)51. Detailed comparison of the code version on the parallel T3D-T3
computer will be given later. The corresponding phase space plots of the distribution func
f(x,y=Ly/2, px, py=0) are shown in Fig. 4. Similar particle acceleration structures ca
be seen with spirals inside the vortex structure which implicitly reflect the history of
particles trapped as the wave built up. There are, however, little changes in maxirnr
momentum leading to an acceleration uniit?(y — 1) ~ 1.5 MeV.

5. NUMERICAL SIMULATION OF CASCADE PROCESSES

Among the studies that have been undertaken to discover new techniques to accel
particles up to ultrarelativistic energies, the ones based on the generation of large ampli
plasma waves (theoretically capable of reaching an electric field of the order of GeV.
seem very promising. A second way to obtain an electric field of such intensity is to inj
two electromagnetic waves in plasma of low density (laser beatwave concept). To ob
fields as strong as possible, the difference of frequencies of the two waves must be chos
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c

FIG. 4. Thex — px phase space representation in the case of a transverse gaussian profile of the laser lic
different times during plasma evolutiom, = 140, 160, 180, 200.

resonate with the plasma frequency. In these conditions the beat of these two electromag
waves induces by resonance a high-phase velocity longitudinal wave, which traps
accelerates electrons to ultrarelativistic energies. The recent UCLA (University of Califor
at Los Angeles) experiment ratio of pump frequency to plasma frequency is very h
(wpump/ wplasma™ 33), which makes it difficult to describe such experiments by numericz
simulations with the usual numerical codes. Because this high ratio imposes a prohibi
computer burden on a direct attack via Eulerian Vlasov or particle-in-cell (PIC) simulatic
we have recently proposed a hybrid model: the one-and-one-half dime{méibr) Eulerian
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Vlasov code (see Refs. [11, 12]) which has been modified to interface with the hi
frequency complex envelopes rather than interfacing directly with the elctromagnetic |
of the Maxwell equations. The important physics are taking place on the plasma pel
time scale; the light waves that are generating the plasma wave have frequencies ¢
or more times the plasma frequency (see Refs. [9, 10]). The hybrid model (which
have called the Hilbert—Vlasov code, HV) becomes an efficient method to investigate
detail the physics of beatwave experiments and we expect that the HV code is doir
good job of imitating the full electromagnetic Maxwell-Vlasov code At00 of the
cost.

However, in beatwave experiments, self focusing, side scattering, cascade proce
are also important. Therefore a two-dimensional model is required. For economy in
analysis of our problem, our pump frequency is chosen to be smaller than the experin
and in order to take into account all electromagnetic effects induced by side scattering
the cascade mechanism of the electromagnetic waves, a Vlasov—Maxwell model is |
here.

In this section we present results from a 2D Vlasov simulation to investigate the relat
importance of Raman scattering (forward scattering, side scattering) and cascade focu
The cascade process is amore complicated situation in which, if a sufficiently intense St
(or idler here) wave is generated, it can then act as a secondary pump wave and gene
higher-order Stokes shifted wave at frequegy= ws — we and so on. A whole hierarchy
of higher order Stokes/anti-Stokes sidebands can be generated in this fashion (howeve
anti-Stokes wave is in this case attenuated rather than amplified). By choosing a high p
frequency valuéw, = 4.147wy), itis then possible to excite a cascade process, butalsoas
scattering process in beatwave excitation provided that the length pisxsufficient. The
choice of a pump wavenumberigit/wp = 7Ak >~ 4.025 (whereAk = 27 /Ly = 0.575w,/C
is the fundamental wavenumber in the x direction) allows a rich variety of possible coupl
(Raman cascades and side scattering and its cascade). The corresponding idler we
ws = 3.043wp.

A first series of simulations is performed to illustrate an example of down-cascading
the idler wave to a second Stokes component in the case of a beatwave experiment
frequency spectrum of the transverse electromagnetic figid presented in Fig. 5. Idler
and pump peaks are clearly resolved in the electromagnetic spectrum and the peak
in good agreement with the predictions obtained from the matching conditions and lin
dispersion relations (see Table 1). As expected, the second Stekes {.993w,) can
be seen in the electromagnetic spectrum (this electromagnetic spectrum exhibits an
Stokes component close to the theoretical valuge=5.270w,, but also a third Stokes and
second anti-Stokes cascade frequency closezto~ wp and was > 6.3wp, but these
components remain at a very small level). Looking at the electromagnetic act
density evolution gives a more precise comparison between both modes. The long
dinal action densitiess, = a,a (kx =Ko, ky =0) (for pump), S (for idler), Ss (for the
one-step cascade Stoke§ys (for the second step cascade Stoke3), (for the anti-
Stokes) together with their su@s are shown in Fig. 6 (which is the first electromag-
netic Manley—Rowe invariant). As expected the action §kyis well conserved (to within
3%).

The semi-Lagrangian Vlasov code allows thus a precise comparison with the mode ¢
pling theory and with the Manley—Rowe invariants. But the most striking advantage of t
model is the very fine resolution in phase space capable to resolving the finest mechal



470 BEGUE, GHIZZO, AND BERTRAND

TABLE |
Pump wave Scattered wave Plasma wave Aw
ko(7Ak, 0) ks(5Ak, 0) ke(2AK, 0) 0.0460,
wo =4.14Tw, ws =3.043w, we=1.056w,
ks(5Ak, 0) kas(3AK, 0) ke(2AK, 0) 0,006,
ws =3.0430, ws=1.993v, we=1.0560,
kes(3AK;, 0) Kss(AK, 0) ke(2Ak, 0) 021
ws=1.993v, ws=1.153, we=1.0560, e
Kes(94K, 0) ko(7AK, 0) ke(2Ak, 0) 0,060
Was=5.27Qw, wo =4.14Tw,, we=1.0560, B
ko(7Ak, 0) ks(5AK, +Ak) ke(2Ak, £Ak) 0.0
wo=4.147Tw, ws=3.097w,, we=1.07Qw, e
Ki(5Ak, £AK) Kos(3AK, £AK) k.(2Ak, £Ak) 010
we=3.0970, whs = 2.0750, =107, e
Kas(9AK, £AK) Kko(7Ak, 0) k.(2Ak, £Ak) 0.09
wt=5.1250, wo=4.14Tw,, wl = 1.070w, e

0.18 — 1 T [ T T T 1] " [ ¥t T T T T [ T T T T 1T
pump wave m, i
E| | ]
i idler wave w, _
Stokes cascade |
0.09 | i
i sz\ anti-Stokes cascade |
L 0, i
| Wgs ' i
| ‘ Wzas |

0. AA—‘A-—’JIQI | v| 1 L it 1 | t | 1

0 2 4 ® 6 8 10
®
p

FIG. 5. Frequency spectrum of the transverse electromagnetic Hglédler and pump peaks are in good
agreement with the theoretical values= 3.043v, andw, = 4.147w,. The electromagnetic spectrum exhibits
also down-shifted (Stokes) and up-shifted (anti-stokes) peaks due to cascade processes.
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0.04 ]
Action - C,=S,+S;+S,,+ S5 + S, / ]
- pump action S,  one-step cascade Stokes S, .
0.02 | l ]
0. | Al N
0 40 80 120 160
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FIG. 6. Electromagnetic action density evolution of purt®), idler (S)), one-step cascade StokeSs),
second-step cascade Stok8g), and anti-StokesS;s) together with their mutual sui@; (corresponding to the
first electromagnetic Manley—Rowe invariant), obtained in the case of an homogeneous transverse laser prc

of particle acceleration. In Fig. 7 the plots of the distribution functien=0, y = Ly/2, py,

py) are presented at various times showing the formation of an accelerated particle b
without transverse dispersion. More details of particle acceleration can be found in Fig.
which we have represented the time evolution of the distribution fundti@ny = Ly /2, py,
py=0) in the x — p, phase space plane. Figure 8 exhibits clearly again the accelerat
of positive velocity particles followed by trapping and the formation of vortices around
momentum corresponding to the plasma wave velagifie ~ 0.918 orp,/mc~~ 2.32.

With minor modifications, the 2D Vlasov code can also simulate the Raman side sc
tering processes. By modifying the initial distribution perturbation in order to allow tr
growth of this instability (we just perturb now the corresponding plasma mode in de
sity with an amplitude of 10%), a second series of numerical simulations is carried out t
analyze the influence of two-dimensional effects. The frequency spectra of the transv
electromagnetic fieldBx and By are illustrated respectively in Figs. 9 and 10. The peak
of the By-part of the electromagnetic wave correspond to the classical cascade process
previously by the idler wave and its decay. The dominant peaks ifBjh&pectrum cor-
respond to the pump and idler wave, and the values obtained here match rather well
the theoretical values. On the other hand, the growth of the x-component of the magr
field cannot be interpreted without taking into account now two-dimensional effects st
as side scattering because this component cannot be excited in a purely one-dimens
model. TheBx magnetic spectrum exhibits the growth of a cascade process of the s
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FIG. 7. Distribution function plotsf (x =0, y=Ly/2, p, p,) attimestw, =8, 98, 143, during plasma evo-
lution showing the formation of an accelerated particle beam without transverse dispersion.

scattering mode with dominant peaks locategat- 2w, andw, ~ 3w,. Further confirma-
tion of the occurring of side scattering is provided in the examination of the action dens
evolution. In Fig. 11 we have again plotted the time evolutiolgofS;, Ss, Sss, Sis, and
their sumCs (the different actions are computed using a two-dimensional Fourier transfo
and then selecting the corresponding mokies ko, ks, kos, and so on, wittky, = 0). Now

Cs exhibits a strong decrease which seems to indicate that the plasma evolves in ar
complicated way leading to the excitation of transverse electromagnetic modes. Figuri
show the plots off (x=0, y=L,/2, py, py). In spite of choosing a particular position in
the configuration space, the behavior of the distribution function remains similar at anot
point of the configuration space. The different plasma waves generated as a result of Re
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FIG.9. Frequency spectrum of tH& magnetic field component showing the occurring of side scattering an
side cascade processes in plasma.

side scattering coupling can give rise to a strong plasma turbulence, which is respon:s
for longitudinal electron acceleration and also a strong “heating” or stochastic accelera
in the perpendicular direction (y-axis).

6. OPTIMIZATION AND PERFORMANCE

All present results were processed on the Cray C94-C98, Cray T3D, and Cray T3E c
puting systems. The vectorized version of the Vlasov code achieved a data processing
of 250 Mflops and demonstrated a reasonably high vectorized efficiency. Two grid sys
NxNyNp, Np, of 128x 8 x 128x 32 and then of 12& 32 x 128x 32 were investigated
resulting in a corresponding number of 4,194,306 and 16,777,216 particles. The CPU 1
was close to 0.54ts per time step per particle on the Cray C94 computer while a fir:
version of the parallelized code gave a value of 2484er time step per particle and per
processor.

The primary task of converting a code to run on a distributed memory machine is to oj
mize array layouts in memory so that the computational load is well balanced among the|
cessors. In our simulation model, the distribution function is partitioned into blocks and t
methodology simplifies the programming structure and loads to natural load-balancin
all the processors. Cubic spline interpolation introduced at each step of the splitting sch
requires tridiagonal matrix inversions. One method for parallelizing matrix operations
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FIG.10. Frequency spectrum of tfig magnetic field componentwith the usual dominant peaks characterizin
the pump and idler longitudinal cascade.

to split the matrix into submatrices and follow a fork-and-join model (with local cycli
reduction algorithm; see for instance Refs. [13, 14]), where each processor is given s
number of operations to perform local factorization of partitioned matrices). For the pres
simulations, a much simpler approach, i.e., static domain decomposition followed by ma
transposition, was chosen. For example, in order to compute the matrix inversion alonc
x direction, the domain was partitioned into thg-direction and then a transposition was
necessary to inverse the tridiagonal matrix alongghlirection.

A substantial amount of improvement was achieved by optimizing the node-to-mem
communications which critically affect the parallel efficiency. The optimized version le
then to a CPU time of 9.;us per time step, per particle, per processor. The numeric
efficiency improvement was by a factor of 3 and seemed to indicate that one proce:
of the Cray C94 is equivalent to 20 processors on the T3D computer (and equivalen
18 processors on the T3E computer). For example, the last simulation presented in
section was carried out using a grid samplidgNy NN,y of 128x 32x 256 32, i.e.,
33,554,432 particles and th@ h on the T3Ecomputer using 32 processors for 3000 time
steps, i.e., 8.03s per time step, per particle, per processor.

For this simulation the load balance measured by considering the total CPU time (c
munication plus calculation) divided by the number of processors and by the total elap
time led to a value of 0.94. (If all of the processors are busy all of the time, then t
above ratio will be unity.) The ratio for the 2D Vlasov code of 0.94 indicated a reasonal
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FIG.11. Time evolution of the corresponding electromagnetic action deSs{igump wave)S; (idler wave),
S (one-step longitudinal Stokes,s = apsas, (kx = kas, ky = 0), S5 (second-step longitudinal Stoke§), (anti-
Stokes wave), and their mutual su®y. Now C; exhibits a strong decrease showing the excitation of transvers
electromagnetic modes (due to side scattering).

efficient use of all processors. The efficient use of the processors was aided by choo
grid dimensions which matched the number of processors in a partition. If the code is
on a 64-node partition, then a grid resolution (onxta py direction) of at least 64 points,
or some multiple (we use 256 points) thereof, in at least one direction is optimal. The cc
munication time required for the matrix transposition was close to 12% of the total CF
time in that case. Another measure of parallel efficiency is scalability, i.e., the reductior
computing time achieved when the number of processors is doubled. For the present c
wall clock times on the T3D computer were measured on the partiidd, Ny Npy of
256x 8 x 256 x 32 to obtain the following measure of scalability,

Tcpui6-node/ Tcpu32-node ~ 2.108 (29)
Tepu3z2-node/ Tepus4-node = 2.060. (30)

Additional efficiency improvement for the present code is still possible by replacir
global synchronous message passing calls with several asynchronous calls using’the
library or the non-standard SHMEMibrary of the Cray system. In essence a sustaine
effort must be maintained to realized the full potential of scalable parallel systems.

2 M.P.l.,, messaggassingnterface.
3 SHMEM, sharedmenory.
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FIG. 12. Plots of the electron distribution function in the — p, momentum space at=0 andy=1L,/2,
attimestw, =8, 120, and 150, leading to a strong longitudinal electron acceleration and heating in the transve
spatial direction.

7. CONCLUSION

In order to investigate the transverse geometrical effects on the particle accelerat
numerical simulations using a two-dimensional relativistic and semi-Lagrangian Vlas
code have been carried out in an electromagnetic regime related to PBWA ad FRS. Dt
the extremely large computational resources required for treating the distribution funct
described in a four variable phase space the use of a massively parallel computer was
essary and enabling. A Vlasov algorithm using a splitting scheme for message passing
multi-computer environment was developed and implemented on T3D and T3E comput
Because of the Eulerian characteristic of the distribution function, the (semi-Lagrangi
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Vlasov code simplifies programming structure because one does not have to cope
the allocation of the particles between processors since Euler elements stay in place.
code employed a classic time splitting scheme, cubic spline interpolation, and matrix tre
position and was adapted to optimally use the particular parallel architecture of the C
T3D and T3E (both processor’s specifications and node-to-node communications). The
Vlasov code gives a good description of the electron acceleration dynamics even in \
low level regions of phase space. Both approaches (particles-in-cell and the Vlasov c
require a more complicated comparison of the interplay between the physics aspect o
model on the one hand and performance and optimization issues on the other. Future \
will address the use of a full relativistic Vlasov model for the study of the laser wakefie
at ultrahigh intensity.
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